ALM - Stochastic Term Structure Models

Tiago Fardilha and Walther Neuhaus

e## Course Program

- Basic interest rate theory
- Interest rate risk management
- Stochastic term structure models
- Risk measurement
- Reinsurance and insurance-linked securities
- Mean-variance analysis for ALM

Contents of the chapter

- Stochastic term structure models (a.k.a. short rate models).
 - Cox-Ingersoll-Ross model
 - Vasicek model
 - Hull-White model
 - Ho-Lee model
- Simulation of stochastic evolution of the yield curve.

- We have seen that
 - Matching protects the surplus against all changers in yield curve, but is usually not useful in practice.
 - Immunization protects the surplus agains parallel shifts in the yield curve, but not necessarily against other kinds of movement.
- To be able to assess what changes one can reasonably expect, one must model the stochastic evolution of the yield curve - the term structure.

- The purpose of stochastic term structure models is to represent the evolution of the yield curve as a stochastic process.
 - At time t, the market price of $\in 1$ payable at time T > t is P(t,T). This price varies randomly from day to day.
 - On any given day t, the function $\{P(t,T):T>t\}$ can be determined, at least in principle, from the observed market prices of bonds and bills.
- We write P(t,T)=exp(-R(t,T)(T-t)), so that R(t,T) is the random spot rate (zero rate) at time t for a term of T-t.

 The short rate is the interest rate at which one can borrow money for an infinitesimal period of time from time t:

$$r(t) \stackrel{ ext{def}}{=} \mathop{lim}_{T o t} R(t,T).$$

• If we write

$$P(t,T) = E\left(e^{-\int_t^T r(s)ds}
ight)$$

• Then

$$R(t,T) = -rac{1}{T-t} ln \; E\left(e^{-\int_t^T r(s)ds}
ight)$$

Term structure equilibrium models

- A stochastic model of the evolution of the short rate r(t) together with a no-arbitrage assumption implies the entire yield curve at time t.
 - Vasicek model

$$dr(t) = a(b - r(t))dt + \sigma dz(t)$$

Cox-Ingersoll-Ross model - CIR

$$dr(t) = a(b-r(t))dt + \sigma\sqrt{r(t)}dz(t)$$

• The term z(t) is a standard Brownian motion (white noise).

Term structure equilibrium models

- Both the Vasicek and CIR model have mean reversion.
- The parameter b describes the long-term average rate.
- The parameter a describes the strength of the gravitation back to the average rate.
- The Vasicek model allows negative interest rates.
- The CIR model allows only positive interest rates.

Affine term structure

 The term structure of the Vasicek and CIR model has the affine form

$$P(t,T) = A(t,T)e^{-B(t,T)r(t)}$$

Equivalently,

$$R(t,T) = rac{1}{T-t} \left(- ln \; A(t,T) + B(t,T) r(t)
ight)$$

with functions A and B that depend on a, b and σ .

Term structure - Vasicek model

 The term structure is easy to calculate and simulate once the parameters are given or estimated.

$$ullet$$
 $P(t,T) = A(t,T)e^{-B(t,T)r(t)}$

$$ullet B(t,T) = rac{1-e^{-a(t-T)}}{a}$$

$$egin{array}{c} (B(t,T)-(T-t))(a^2b-rac{1}{2}\,\sigma^2) \ ullet A(t,T)=e \end{array} \quad egin{array}{c} (B(t,T)-(T-t))(a^2b-rac{1}{2}\,\sigma^2) \ & e^{-rac{\sigma^2B^2(t,T)}{4a}} \end{array}$$

Term structure - CIR model

 The term structure is easy to calculate and simulate once the parameters are given or estimated.

$$ullet$$
 $P(t,T) = A(t,T)e^{-B(t,T)r(t)}$

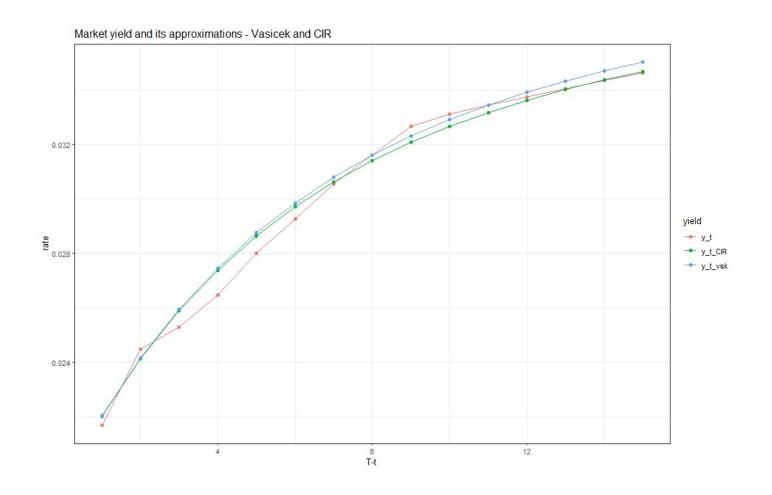
$$ullet A(t,T) = \left(rac{2\gamma e^{(\gamma+a)(T-t)/2)}}{(\gamma+a)(e^{\gamma(T-t)}-1)+2\gamma}
ight)^{2ab/\sigma^2}$$

$$ullet \ B(t,T)=rac{2(e^{(\gamma(T-t)}-1)}{(\gamma+a)(e^{\gamma(T-t)}-1)+2\gamma}$$

$$ullet$$
 $\gamma=\sqrt{a^2+2\sigma^2}$

Example 1

• In script 6, we will fit the two models to the yield curve - CIR and Vasicek models.



Example 2

Present Value of liabilities, assets and surplus of our portfolio of 3 bonds, under yields approximated by CIR and Vasicek models:

```
PV.liab.CIR PV.assets.CIR PV.surplus.CIR
1 11728816 11747649 18832.91
PV.liab.vsk PV.assets.vsk PV.surplus.vsk
1 11721531 11740279 18748.45
```

 The surplus PV is different from 0 because the CIR model is not a perfect replication of the empirical yield curve that was used to find the immunising portfolio, and neither is the Vasicek model.

Simulation - CIR

• Discrete time approximation of the CIR model:

$$dr(t) = a(b-r(t))dt + \sigma\sqrt{r(t)}dz(t)$$

• If Δt is small, this is approximated by

$$r(t+\Delta t) = r(t) + a(b-r(t))\Delta t + \sigma \sqrt{r(t)} \cdot \left[\sqrt{\Delta t} \cdot N(0,1)
ight]$$

Simulation - Vasicek

• Discrete time approximation of the Vasicek model:

$$dr(t) = a(b-r(t))dt + \sigma' dz(t)$$

ullet If Δt is small, this is approximated by

$$r(t+\Delta t) = r(t) + a(b-r(t))\Delta t + \sigma' \cdot \left[\sqrt{\Delta t} \cdot N(0,1)
ight]$$

• Note that $\sigma' \neq \sigma$ (from CIR).

Simulation - Central results

Simulation of a univariate random variable by inverting the cumulative distribution function:

- ullet If $F^{-1}(u)=inf\{x:F(x)\geq u\}$ and $U\sim Unif[0,1],$ then $F^{-1}(U)\sim F.$
- One can simulate any random variable $X\sim F$ by $X=F^{-1}\left(U
 ight)$, with $U\sim Unif\left[0,1
 ight]$. In **R**, we may use the function runif().
- If *F* has an explicit inverse or an available **R** function for the inverse, all becomes easy, e.g. X = qnorm(runif()) will be normal distributed with mean 0 and s.d. 1.

Example - I

• In script 7, we will compute 5000 six month year ahead simulations, using CIR and assuming all payments are made at year end. Homework: The same using Vasicek model.

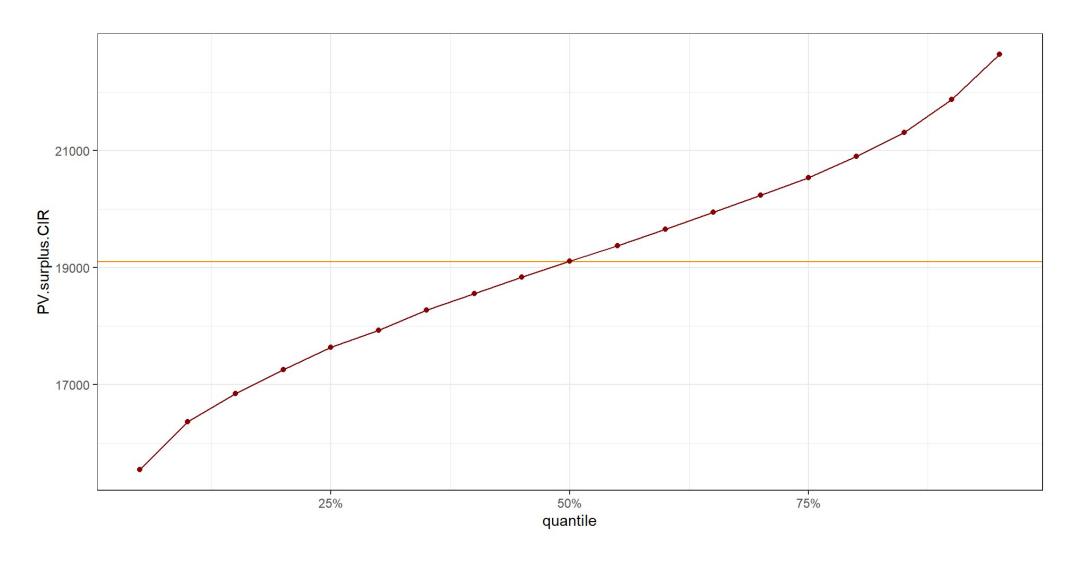
```
# A tibble: 75,000 \times 9
           r 0
                drift
                                 dz rand.term new.r `T-t` `P(t,T)`
    sim
                      unif
  <int> <dbl> <dbl> <dbl> <dbl>
                                    <dbl> <dbl> <dbl> <dbl>
                                                            <dbl>
      1 0.0195 0.00277 0.989 2.29
                                    0.0113 0.0336 0.5
                                                            0.983
1
      2 0.0195 0.00277 0.398 -0.259 -0.00128 0.0210 0.5
                                                            0.989
      3 0.0195 0.00277 0.116 -1.20 -0.00591 0.0164
                                                     0.5
                                                            0.991
      4 0.0195 0.00277 0.0697 -1.48 -0.00730 0.0150
                                                     0.5
                                                            0.992
4
5
                                                     0.5
      5 0.0195 0.00277 0.244 -0.694 -0.00343 0.0188
                                                            0.990
                                                     0.5
6
      6 0.0195 0.00277 0.792 0.813 0.00402 0.0263
                                                            0.987
      7 0.0195 0.00277 0.340 -0.412 -0.00204 0.0202
                                                     0.5
                                                            0.989
      8 0.0195 0.00277 0.972 1.91 0.00944 0.0317
                                                     0.5
                                                            0.984
9
      9 0.0195 0.00277 0.166 -0.971 -0.00479 0.0175
                                                      0.5
                                                            0.991
10
     10 0.0195 0.00277 0.459
                             -0.103 -0.000507 0.0218
                                                      0.5
                                                            0.989
   74,990 more rows
```

Example - II

First of the 5000 one-half year ahead simulations

```
# A tibble: 5,000 \times 4
     sim PV.liab.CIR PV.assets.CIR PV.surplus.CIR
  <int>
              <dbl>
                            <dbl>
                                           <dbl>
          11495736.
                        11519726.
                                          23990.
 1
 2
          11884984.
                        11903546.
                                          18561.
 3
          12032045.
                        12048573.
                                          16528.
 4
          12076503.
                        12092418.
                                          15915.
 5
          11952977.
                        11970597.
                                          17620.
 6
          11719234.
                        11740100.
                                          20865.
 7
          11908860.
                        11927090.
                                          18231.
 8
      8
          11552177.
                        11575376.
                                          23199.
 9
      9
          11996394.
                        12013414.
                                          17020.
10
      10
          11860637.
                        11879536.
                                          18899.
    4,990 more rows
```

Example - Simulated PV of Surplus



Stochastic term structure models - no arbitrage

- The term structure of a Vasicek or CIR model can never perfectly replicate the actual (observed) term structure.
- Sometimes one needs a model that starts with today's exact term structure and evolves stochastically from there.
- Models with that property are called no-arbitrage models.

Ho-Lee and Hull-White models 1

 Like the Vasicek and CIR models, the Ho-Lee and Hull-White models have an affine term structure of the form

$$P(t,T) = A(t,T)e^{B(t,T)r(t)},$$

with different functions A and B.

- In the Ho-Lee and Hull-White models, the function A(t,T) depends not only on model parameters but also on the initial term structure.
- The Ho-Lee and Hull-White models permit perfect fit to today's empirical term structure.

Ho-Lee and Hull-White models 2

Ho-Lee model

$$dr(t) = \theta(t)dt + \sigma dz(t)$$

Hull-White model

$$dr(t) = (heta(t) - ar(t))dt + \sigma dz(t)$$

• The term z(t) is standard Brownian motion (white noise).